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SUMMARY
Mesothelioma is classified into three histological subtypes, epithelioid, sarcomatoid, and biphasic, accord-
ing to the relative proportions of epithelioid and sarcomatoid tumor cells present. Current guidelines recom-
mend that the sarcomatoid component of each mesothelioma is quantified, as a higher percentage of sarco-
matoid pattern in biphasicmesothelioma shows poorer prognosis. In this work, we develop a dual-task graph
neural network (GNN) architecture with ranking loss to learn a model capable of scoring regions of tissue
down to cellular resolution. This allows quantitative profiling of a tumor sample according to the aggregate
sarcomatoid association score. Tissue is represented by a cell graph with both cell-level morphological
and regional features. We use an external multicentric test set from Mesobank, on which we demonstrate
the predictive performance of our model. We additionally validate our model predictions through an analysis
of the typical morphological features of cells according to their predicted score.
INTRODUCTION

Malignant Mesothelioma (MM) is an aggressive cancer of malig-

nant mesothelial cells of the pleural lining, primarily associated

with asbestos exposure.1 It has a poor prognosis with less than

10% 5 year survival rates due to late diagnosis.2,3 It has a long la-

tency period from initial exposure to eventual carcinogenesis and

is difficult to diagnose due to its non-specific clinical manifesta-

tions. MM is classified into 3 subtypes,4 epithelioid, biphasic,

and sarcomatoid mesotheliomas (EM, BM, and SM, respectively),

with BM characterized by a mix of epithelioid and sarcomatoid

components. The histological subtype of mesothelioma is essen-

tial for prognosis and clinical decisions on treatment pathways for

patients.5 Stratification of a given sample into a particular subtype

informs treatment and can help gain a more in-depth understand-

ing of disease pathology and outcome. The benefit of surgical

treatment has prognostic implications for EM with a median sur-
Cell Rep
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vival of 19months but less so for SM and BM, with respectiveme-

dian survivals of 4 and 12 months after surgical treatment.6

EM is characterized by malignant cells that are cytologically

roundwithvaryinggradingsofatypia.SMcells aregenerally recog-

nized as malignant elongated spindle cells7 and are associated

with worse prognosis in comparison with EM. SM cells may also

include transitional features that are intermediate between epithe-

lioid and sarcomatoid. Although transitional cells are now classi-

fiedunderSM, their presence isassociatedwithworseprognosis.8

While the distinction of these three histological subtypes of

MM is crucial to patient treatment, management, and prognosis,

it is challenging to differentiate EM, SM, and BM through visual

analysis. Currently, there are no clear guidelines on how to

perform this stratification in an objective and reproducible

manner.9 Furthermore, even though mesotheliomas are divided

into these three broad categories, in reality, there is a continuous

spectrum fromEM to SMdependent upon the relative proportion
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of epithelioid and sarcomatoid cells in a given sample. As a

consequence, existing approaches are unable to objectively

quantify where on this spectrum a given sample falls based on

profiling of cellular morphological patterns in it.

A number of deep learning methods for analyzing mesotheli-

oma images have been developed recently. For example,

SpindleMesoNet10 can separate malignant SM from benign

spindle cell mesothelial proliferations. A recent approach for sur-

vival prediction of patients with MM calledMesoNet8 uses amul-

tiple instance learning (MIL) solver originally developed for com-

puter vision applications11 and classification of lymph node

metastases.12 However, automated subtyping of mesothelioma

from hematoxylin and eosin (H&E)-stained tissue sections re-

mains an open problem.

One challenge in the characterization of mesothelioma is that

pathologist-assigned ground-truth labels of mesothelioma sub-

types are typically available only at the case level, as it is very

difficult for pathologists to associate tumor microenvironment

or cellular morphometric patterns with image- or case-level la-

bels in an objective manner. Moreover, it can be very time

consuming to obtain detailed cellular or regional annotations,

and those annotations may not be very reliable due to significant

inter- and intra-observer variation.

The aim of this study was to develop a graph neural network

(GNN) approach to predict subtypes of mesothelioma in an

MIL setting. This was achieved considering tissue microarray

(TMA) cores as bags and individual cells as instances. On these,

we have built a weakly supervised machine learning model to

characterize mesothelioma subtypes using only case-level la-

bels in its training. The proposed approach can generate a quan-

titative assessment of where the sample stands in terms of the

aforementioned epithelioid to sarcomatoid spectrum, enabling

pathologists to perform a more in-depth characterization of tu-

mor samples. An overview of the approach presented in the

article can be found in Figure 1.

RESULTS

We have developed a custom GNN-based pipeline called

MesoGraph that can predict mesothelioma subtypes using

H&E-stained tissue images. MesoGraph uses pathologist-as-

signed case-level labels without any cellular or regional annota-

tions in its training. The proposed approachmodels each cell in a

given sample as a node in the graph, which is connected to

neighboring cells. Each node is associated with various features,

which can be broadly classified into four types: (1) nuclear

morphometric features, (2) stain intensity features of nuclear

and cytoplasmic components of the cell, (3) cellular counts in

the neighborhood of node, and (4) deep neural network and Har-

alick-based texture features. For a given test sample, it gener-

ates two probability scores (collectively called MesoScore) rep-

resenting the probabilities of the sample being epithelioid or

sarcomatoid. As a BM tumor is composed of both epithelioid

and sarcomatoid components, the two outputs in MesoScore

allow precise quantification of the two components in

the sample. In addition to predicting mesothelioma subtype,

MesoGraph also generates cell-level quantitative scores repre-

senting the association of each cell with the mesothelial subtype
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of the given sample. MesoGraph has been trained and indepen-

dently validated on two datasets: St. George’s Hospital (SGH;

n = 234) and themulticentric Mesobank (MB) collection (n = 258).

In this section, we present the results of the proposed method

in terms of its predictive performance in comparison to existing

approaches, as well as its ability to identify histological features

and morphological characteristics of cells associated with

different subtypes of mesothelioma. We also demonstrate the

ability of the proposed approach to stratify patients with meso-

thelioma based on their expected survival.

Predictive performance
Test results from the MesoGraph pipeline for both MB and SGH

datasets are shown in Figure S4 and Table 1. Here, the receiver

operating characteristic (ROC) curve is obtained by considering

both sarcomatoid and biphasic samples as the positive class,

whereas the epithelioid samples are associated with the negative

label. As can be seen from these results, the proposed approach

offers high predictive quality over both cross-validation and inde-

pendent testing in comparison to other existing approaches. In the

table, PINS refers to the positive instance sampling patch-based

MIL approach as detailed in Eastwood et al.,13 whereas CLAM

is the clustering-constrained attention MIL method described in

Lu et al.,14 a deep-learning-based weakly supervised method

that uses attention in combination with clustering-based con-

straints to identify the most predictive areas of the image. Max-

MIL and naive-MIL are simple patch-based baselineMILmethods

detailed further in the STAR Methods Model performance and

evaluation. As can beseen fromTable 1, themax-basedMIL strat-

egy performs poorly. This is likely due to the relatively small size of

the training dataset, as learning only on the maximally scoring

instance per bag exacerbates this. Naive-MIL performs surpris-

ingly well. Thismay be due to the relatively high proportion of pos-

itive instances that are expected to be present inmany of the pos-

itive bags (for example, a sarcomatoid core should contain mostly

positive instances). Thismakes the implicit assumption thismodel

makes, namely that all instances share the label of the bag, less

wrong for this dataset compared with other MIL tasks. PINS and

CLAM, as two patch-based methods with a mechanism for

focusingon themost relevant regionof an image, perform similarly

with solid performance. However, as patch-based methods, the

spatial resolution of the prediction maps they can provide is lower

than that of our cell-graph-based model.

Ourmodel outperformsothermodels tested, achievingan inter-

nal cross-validation performance of 0:90± 0:01. It performs

particularly well in terms of its average precision (AP) of

0:86± 0:02, indicating that its performance on the positive class

(which is the minority class) is very good. While performance

drops slightly on the external validation set, an area under the

ROC (AUROC) of 0.86 and an AP of 0.8 as seen in Figures S4C

and S4D shows that these results generalize well. We attribute

the performance improvements achieved by our model firstly to

the cell graph representation, with cells and their morphological

features as instances, which is far more natural than an arbitrary

division into patch instances, and secondly, to our formulation

of the learning as a dual-task problem with a ranking loss. The

ranking loss acknowledges the ordering we know exists between

EM, BM, and SM cores in terms of how much of a sarcomatoid



Figure 1. Overview of the study, model, and experimental design

(A) Data and experimental design. TMA slides were de-arrayed into individual images, and images of cores that were dropped or particularly badly damagedwere

excluded. The model is trained on the St. George’s cohort and validated both internally and on the external Mesobank cohort.

(B and C) Steps to represent a TMA core as a graph, from cell detection, through extraction of morphological and local neighborhood features, to the construction

of the cell graphs upon which our model will be trained. In (C) is the proposed MesoGraph GNN architecture. Deeper layers incorporate information from larger

neighborhoods. By concatenating layer representations, we allow the model to use information at multiple scales.
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component is present, and the dual-task formulation allows the

possibility that some regions of tissuemay not be strongly associ-

ated with either a sarcomatoid or an epithelioid core label.

Visualization of model output
The output of our model can be visualized in a zoomable, interac-

tive graphical user interface (GUI) we have developed. A demo of
results from our model can be found at https://mesograph.dcs.

warwick.ac.uk. Examples of the cell-level scoring output by the

model are shown in Figure 2. Further examples of model output

on biphasic whole-slide image (WSI) samples from The Cancer

Genome Atlas (TCGA) dataset, illustrating the ability of our model

to define regions of differing histological subtype, can be found in

Figure S3. For each cell in a given sample, the proposed model
Cell Reports Medicine 4, 101226, October 17, 2023 3
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Table 1. Summary of results of models evaluated on a primary dataset (SGH)

Metric AUROC Avg. precision Sensitivity Specificity

Max-MIL 0:70±0:01 0:54±0:12 0:54±0:07 0:73± 0:09

Naive-MIL 0:84±0:05 0:72±0:11 0:72±0:08 0:71± 0:1

PINS13 0:85±0:05 0:80±0:07 0:82±0:1 0:71± 0:13

CLAM14 0:85±0:07 0:74±0:11 0:75±0:11 0:77± 0:02

MesoGraph (ours) 0:90±0:007 0:86±0:02 0:88±0:015 0:72± 0:01

Mean ± SD is shown for each metric. Avg, average.
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generates two prediction scores signifying the probability of the

cell being associated with a sarcomatoid or an epithelioid label.

These scores can be combined and visualized in a colormap

showing cells that are associatedwith epithelioid (blue) and sarco-

matoid (red) subtypes, as well as in a histogram (called

MesoGram) showing the relative distributions of epithelioid and

sarcomatoid components.

From the zoomed-in masks, we can see that the model can

distinguish between regions with typical rounded morphology

of the epithelioid subtype and the more elongated morphology

displayed in sarcomatoid regions. The MesoGram plots of

most samples tend to be bimodal to some extent, with epithe-

lioid and sarcomatoid cores more heavily skewed toward low

and high scores, respectively. This continuum of distribution be-

tween sarcomatoid and epithelioid is demonstrated further in

Figure 3, where thumbnails of model output on all cores are

shown, grouped by subtype and ordered within each subtype

by model score. This ability to give a more precise, fine-grained

characterization of a tumor beyond the current three poorly

defined and subjective subtypes is a strength of our approach.

Explainability of model predictions
To gain an understanding of the predictions generated by the pro-

posed approach, we have applied GNNExplainer15 to the trained

GNN model. This allows us to understand what node-level fea-

tures are contributing to the prediction of a given sample for

each subtype. The top 10 features identified in this analysis are

shown in Figure 4.

The most important feature overall is the circularity, which con-

firms the expecteddistinction between the roundermorphologyof

the epithelioid subtype compared with the more spindle-shaped

sarcomatoid morphology. There are also a number of features

describing the intensity and texture in the eosin channel around

the nucleus. Looking at the feature importances on specific sub-

types, the resnet features are most useful on epithelioid cores.

Circularity is specifically important in epithelioid and sarcomatoid

subtypes, as they tend to be composed of more homogeneous

populations and therefore are expected to contain mostly either

rounded or more elongated cells. In both biphasic and sarcoma-

toid cores, nearby detection counts seem to be an important

feature. This may reflect a tendency for non-epithelioid tumors to

display a slightly more spread out and disorganized cell distribu-

tion.Wealso notice that the importanceofmost of the top features

has farmore spreadwhenconsidering epithelioid cores, indicating

that a wide variety of features can contribute to an epithelioid

score, with few features being universally important across all

epithelioid cores.
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To determine the separation between classes based on top-

scoring features, in the bottom half of Figures 5C and 5D, we

plotted the prediction of each core against the assigned label

by a pathologist. While epithelioid cores and sarcomatoid cores

are mostly well separated, we observe that there can be overlap

between some of the cases in terms of morphology. We also

observe that biphasic cores are not very distinct from sarcoma-

toid cores.

Characterization of cellular morphologies
Pathologists assess cell morphology when diagnosing and

scoring mesothelioma tumors. Therefore, we sought to investi-

gate differences in nuclear morphology between mesothelioma

tumors with different diagnoses. We focused on key features as-

sessed qualitatively by pathologists including nuclear area, elon-

gation (width and length) and nucleus shape regularity as

measured by both circularity (how close it is to a circular shape),

and solidity (which reflects overall concavity of a shape). Inter-

estingly, in Figure 5, we found that sarcomatoid tumors tend to

have larger nuclei on average compared with epithelioid tumors.

As expected, these nuclei are more elongated and have less

circularly shaped. For almost all features, measures of nucleus

shape in biphasic tumors fall in between epithelioid and sarco-

matoid tumors. These results already confirm that our image

analysis pipeline reflects inherent differences between these

types even when only considering the average measures of

each tumor, which is consistent with pathological features.

This motivates the development of more sophisticated AI

methods to detect these differences.

Next, we investigated the extent of variability in morphological

measurements across different tumor types. We measured the

standard deviation of cell features for each single tumor core

as a proxy of heterogeneity. We found that sarcomatoid tumors

exhibit higher morphological heterogeneity in all nuclear fea-

tures. These analyses motivate the investigation of single-cell

phenotypes to identify the most relevant subpopulations.

We can gain further insight into the differences in morphology

that the model is associating with each subtype by looking at the

principal components of cells assigned the highest and lowest

scores (i.e., most and least likely to be associated with a sarco-

matoid core, respectively).

Comparing the first principal component for each subtype in

Figure S2, we can see that the model has learned to assign a

higher score to cells with a more elongated morphology. This re-

flects a known distinguishing feature of the sarcomatoid

morphology, validating our model scoring. This is further illus-

trated in the scatterplot in the top half of Figure 5, where we



Figure 2. Examples of model visualization on

a selection of TMA cores

Each core is shown together with a zoomed-in view

showing the differences in morphology between

regions and a plot showing the distribution of node

scores in that core.

(A and B) Epithelioid core. (A) We see a predomi-

nantly low-scoring core with only a few small regions

displaying slightly more sarcomatoid features.

Conversely, in (B), a sarcomatoid core, nodes are

predominantly high scoring.

(C and D) Biphasic cores. In each core, we see a

bimodal distribution of scores, particularly pro-

nounced in core (D). The zoomed-in regions show a

distinct difference in morphology between high- and

low-scoring regions, with rounder cells seen in

lower-scoring regions and a more elongated

morphology and less structured cell organization in

higher-scoring regions.
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show a supervised uniform manifold approximation and projec-

tion (UMAP)16 of the principal components of high- and low-

scoring cells. The supervisory signal is provided by the output

of our model as a binary label of whether it is in the top or the bot-

tom 10% of cells by score. Each point in the map represents a

cell, colored red if it is in the top 10% of model scores or blue

if in the bottom 10%. UMAP attempts to learn an embedding in

which examples with similar features are closer together. Thus,

by looking at groups of cells in this map, we can understand

how high- and low-scoring cell populations look. From Figure

5’s sarcomatoid groups B and E, we can see that elongated cells

are scored highly sarcomatoid, as are groups C and D, which

show large, irregular cells. Cells scored in the bottom 10%

tend to be much smaller, as can be seen in groups F, H, I, and

J. They also are rounder and more regular in their shape. As

can be seen comparing epithelioid group G with sarcomatoid

group C, while large cells may also be scored as epithelioid,

they have a round shape with less texture to the staining.
Cell Repo
Survival analysis using MesoScores
Survival analysis using Kaplan-Meier plots

are shown in Figure 6. Patients were divided

into two groups based on model score.

Themedian survival time of the group of pa-

tients predicted more sarcomatoid was

significantly shorter compared with the

lower scoring group of patients (190 vs.

402 days, p< 0:002). This difference in sur-

vival can be observed in the Kaplan Meier

plot (Figure 6A), where the predicted non-

sarcomatoid curve in orange is less steep

than the blue predicted sarcomatoid curve.

In a Cox-proportional hazard model

adjusted for gender and age at diagnosis,

the hazard ratio for sarcomatoid cases

was 2.43 (95% confidence interval [CI]

1.44–4.12, p< 0:005), indicating that pa-

tients with sarcomatoid morphology were

2.43 times more likely to have died at a spe-
cific time point than non-sarcomatoid subjects. In comparison,

the hazard ratio (HR) for both gender and age were both much

smaller, at < 1:1. Very similar findings were obtained with

censoring at 3 years (see the supplemental information; Figure 2).

DISCUSSION

We have developed a model capable of learning a cell-level indi-

cation of sarcomatoid and epithelioid regions of a TMA core tis-

sue sample, which enables quantitative characterization of a

core according to the relative proportions of S and E compo-

nents present. In summary:

(1) We have developed a GNN model (called MesoGraph)

that can predict the mesothelioma subtype of the given

patient sample with high accuracy (AUROC > 0.85) over

independent multicentric validation using only H&E-

stained images of tumor samples.
rts Medicine 4, 101226, October 17, 2023 5



Figure 3. Overview of model predictions by

subtype

Images of model predictions ordered within each

subtype by the predicted predominance of the sar-

comatoid component, illustrating the underlying

continuous biological expression of tissue on the

epithelioid to sarcomatoid spectrum.
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(2) For a given sample, the proposed approach can generate

a quantitative assessment (called MesoScore) of where

the sample stands are in terms of the epithelioid to sarco-

matoid spectrum.

(3) Model predictions can be mapped onto individual cells in

a given sample to generate histograms (called

MesoGrams) showing the relative densities of epithelioid

and sarcomatoid components within the tumor.

(4) MesoGraph-generated scores can be used as a prog-

nostic marker for predicting disease specific survival.

(5) We show that the weakly supervised model is able to

characterize known morphological patterns of cells asso-

ciated with EM and SM.
Cell Reports Medicine 4, 101226, October 17, 2023
(6) The code and the dataset used in this

study have been made publicly avail-

able for further development at

https://github.com/measty/

MesoGraph.

The developed approach could help pa-

thologists to subtype a core more accu-

rately, consistently, and efficiently and

paves the way to move beyond the three-

type system of characterizing a tumor to-

ward a more fine-grained characterization

that matches the underlying continuous

biological expression of mesothelial tumor

cells on a spectrum between epithelioid

and sarcomatoid morphology.

Most MIL-based methods introduced in

the literature have been patch based. One

such MIL approach was introduced in Li

et al.17 Here, a dual-stream approach was

used where the final bag score is the

mean of max instance pooling and an

attention-based weighted average of in-

stances attended to by the max instance.

In another approach,18 large-scale data-

sets are used to train an MIL model for tu-

mor detection, backpropagating only the

top K instances per bag. The CLAM algo-

rithm14 is a further patch-based MIL

method with attention that has been

applied to a variety of computational pa-

thology tasks. As a final example of

patch-based approaches, in the IDaRS al-

gorithm proposed in Bilal et al.19 to detect

key mutations on colorectal cancer,

learning occurs on patches drawn using a
ranking-based sampling scheme. While these MIL approaches

have been developed for patch-level instances, we develop

our method by treating each cell as an instance, allowing us to

investigate the differences in cell morphology between sub-

types. This also removes the limitation on spatial resolution of

predictions imposed by a patch-based approach.

GNNs have also been applied in this domain. In Lu et al.,20 a

GNN is used on prostate cancer TMA cores with self-supervised

and morphological features for the task of classifying examples

as high or low risk according to the Gleason score. GNNs are

applied to WSIs in Lu et al.21 by spatially clustering cells to

form agglomerate nodes from which to build a slide-level graph

to predict HER2 status in breast cancer. Our approach uses a

https://github.com/measty/MesoGraph
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Figure 4. Illustration of the top 10 features

identified by GNNExplainer

(A–D) considering all cores (A), and in (B)–(D), im-

portances on cores grouped by subtype. Results

shown as a standard box and whisker plot, with the

box showing the 25th, 50th, and 75th percentile of a

features importance scores over cores. Whiskers

show min and max values, limited at box ± 1.53

inter-quartile range. The top feature is circularity, a

known differentiating characteristic between meso-

thelial subtypes, providing validation for our model.
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dual-task formulation with ranking loss, on a cell graph, to allow

better identification of regions associated with the two compo-

nents that may be present in a mesothelioma core.

The results for this study show a potential for clinical implica-

tions when applied to routine diagnosis of MM. As shown in our

work, there is a gradient between epithelioid and sarcomatoid

MM, and the various cell populations are identifiable and can

be quantified using our approach. Improving identification ofme-

sothelioma subtypes is an essential part of diagnosis for MM.

The behavior of biphasic MM is dependent on the ratio of epithe-

lioid and sarcomatoid cells and may also be extended to other

biphasic tumors. The survival of BM is suspected to correlate

with the amount of the sarcomatoid component.22,23 The criteria

for a sarcomatoid component are not well defined, and the inter-

observer variability between expert pathologists for identifying

this component is moderate.24 With the increasing use of digital

pathology, this model represents a first point of entry for an AI-

based clinical tool that can be applied by pathologists to more
Cell Repo
accurately define epithelioid and sarcoma-

toid components in mesothelioma, espe-

cially in BM, and potentially create future

opportunities to improve clinical decision-

making and prognosis. Diagnosis by pa-

thologists of subtype and percentage of

sarcomatoid and epithelioid components

can guide treatment pathways.23,25 Sur-

gery and multimodality chemoradiation

therapy are the most common treatments

for all types of mesothelioma.26,27 There

are mixed results using chemotherapy

and radiation for BM, and surgical thera-

pies are largely ineffective for SM. How-

ever, the therapies have shown some

success in extending life expectancy for

epithelioid-type mesothelioma. Addition-

ally, EM, and to lesser extent SM, has

been shown to respond well to immune

checkpoint inhibitors.28 MesoGraph is a

first-of-its-kind tool that allows for a pre-

cise and accurate determination of the

fraction of sarcomatoid-type tumor cells.

As such, MesoGraph has the potential to

guide treatment options such as surgery

and multimodality therapy options in a

more precise manner, given that patients
may be less responsive to therapy depending on the fraction of

SM. Additionally, a precise determination of the fractions of

epithelioid and sarcomatoid cells may assist in a more accurate

assessment of individual patient prognosis.

One limitation of our method is that while we have taken care

to validate our model by looking at the features that influence

its predictions and the typical morphology of cells found in

epithelioid and sarcomatoid regions, we still have some issues

with the interpretability of the model outputs. Not all of the fea-

tures our model learns on have an obvious histomorphological

counterpart. For example, if we see from a feature importance

analysis that a particular resnet feature is important, it is not

clear how that translates into a histomorphological biomarker

that a pathologist can look for in a tissue sample. Haralick

texture features are a little better, as they are constructed to

capture specific, well-defined properties of textures, but they

are still difficult to interpret in comparison to morphological

features.
rts Medicine 4, 101226, October 17, 2023 7



Figure 5. Illustrations of morphological differences between predicted subtypes

Top: examples of cells scored most and least highly by the model, plotted as a 2D UMAP reduction of principal components calculated on both high- and low-

scoring cells. For each cluster, themean of the cells is displayed, together with individual example cells. Clusters A–E, on the left, are predicted to be sarcomatoid

and demonstrate a more spindle-like morphology, grouped together in size and relative spindle cell characteristics in each cluster as shown by example cells on

the right. Similarly, the non-sarcomatoid predicted cells also show clustering into 5 groups, F–J. Bottom: morphological heterogeneity of mesothelioma tumors

independent of model prediction.

(A) Distribution of average morphology across tumor types. All measurements are normalized to the data average and standard deviation.

(B) Heterogeneity of cell morphology across different mesothelioma tumor types based on standard deviation (SD) of Z scored single-cell data.

(C and D) Morphological heterogeneity based on ground-truth labels (C) and predicted labels (D).
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Our use of TMA cores is also an area for improvement. The

aim of the model is to define the epithelioid and sarcomatoid

components of mesothelioma. By using TMAs that have pre-

selected areas of tumor cells as defined by expert histopathol-

ogists, we increase the likelihood that we are training on meso-
8 Cell Reports Medicine 4, 101226, October 17, 2023
thelioma tumor cells. The limitation of TMAs is that they are also

highly selective because of being only representative of the

tumor cell population, and in contrast to resection material,

TMAs have only limited or very little additional surrounding tis-

sue that will include spatial heterogeneity of tumor cells and



Figure 6. Survival prediction using Meso-

Score

(A) Kaplan-Meier curves for all data. For data right

censored at 3 years (see Figure S1).

(B) Cumulative events and total number at risk at

each of the times shown on the x axis

(C) Log hazard ratio of highMesoScore compared to

demographic factors.
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microenvironment. We have illustrated our model output on re-

gions of interest (ROIs) of a small number of biphasic slides

from TCGA dataset, shown in Figure S3. We aim in further

studies to modify our pipeline to use whole slides of resection

material to further validate our model and expand on the role

of the tumor microenvironment.

Future work could involve the incorporation of cell classifi-

cations via a segmentation method such as Hovernet,29

capable of simultaneous cell segmentation and classification.

This would provide a further informative feature that may help

identify cell-type-specific patterns such as an association of

tumor-infiltrating lymphocytes to a specific subtype. Such fea-

tures could also help move away from difficult-to-interpret

features such as resnet features, without sacrificing perfor-

mance. A more extensive evaluation considering a larger da-

taset and including pathologist concordance studies to iden-

tify whether pathologists using such a tool would make

more consistent and more accurate subtyping could also be

considered.

In conclusion, we provide amethod for more precisely charac-

terizing epithelioid and sarcomatoid cell subtypes in a quantifi-

able and reproducible way. Given the importance of sarcoma-

toid subtypes for prognosis and deciding on treatment

pathway, our method may potentially offer clinical implications

for patient care. Improved subtyping of MM allows for gains in

both the efficiency and reliability of assessment of mesothelioma

tumor cell classification by a reporting pathologist. The method

we present and future work using our approach to further define

the epithelioid and sarcomatoid spectrum of MM may ultimately

form a basis for improving treatment and prognosis for the

patient.

Limitations of the study
There are two main limitations of our work. One limitation is the

interpretability of the model outputs. While we have taken care
Cell Repo
to validate our model by looking at the fea-

tures that influence its predictions and the

typical morphology of cells found in epithe-

lioid and sarcomatoid regions, not all of the

features our model learns on have an

obvious histomorphological counterpart,

and these can be difficult to interpret in

comparison to morphological features.

Our use of TMA cores is also a limitation.

We have illustrated our model output on

ROIs of a small number of biphasic slides

from TCGA dataset, shown in Figure S3.

However, in order to be most effective on
WSIs, a modified pipeline trained on a large dataset of mesothe-

lioma WSIs would be preferable.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Mesobank https://www.mesobank.com/ meso TMA dataset

Software and algorithms

tiatoolbox https://github.com/TissueImageAnalytics/tiatoolbox/ v1.4

torch geometric https://pytorch-geometric.readthedocs.io/

en/latest/install/installation.html

v2.3

bokeh http://bokeh.org/ v3.1

lifelines https://lifelines.readthedocs.io/en/latest/ v0.25.10

QuPath https://doi.org/10.1038/s41598-017-17204-5 v0.3.0

GNNExplainer https://arxiv.org/abs/1903.03894 v2.3 (part of torch-geometric)

torch geometric https://pytorch-geometric.readthedocs.io/

en/latest/install/installation.html

v2.3

Original MesoGraph code https://github.com/measty/MesoGraph original research code
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Mark

Eastwood (Mark.Eastwood@warwick.ac.uk).

Materials availability
This study did not generate new materials.

Data and code availability
d Tissue Micro-array cores and labels for the primary cohort are linked in the github repository at: https://github.com/measty/

MesoGraph The Mesobank data is available from Mesobank (https://www.mesobank.com/) on request. This would require

the completion of mesobank’s standard application form. It would then be reviewed to make sure that the proposed use of

the data is covered by mesobank’s generic ethical approval, and a suitable Data Sharing Agreement would need to be in place

before any data is released.

d All original code is publicly available at: https://github.com/measty/MesoGraph.

d Any additional data is available from the lead contact on request.
EXPERIMENTAL MODEL AND SUBJECT DETAIL

The project was run according to the Imperial Research Codes of Practice and in line with the funder’s terms and conditions. Two

independent MM patient cohorts were obtained retrospectively (see Figure 1A): The training cohort was from St. Georges Hospital

and consisted of 102 patients. The validation cohort, of 82 patients, was obtained from Mesobank,30 a UK mesothelioma biobank.

Mesobank collects samples from multiple UK hospitals. The date of death for Mesobank patients had been provided by the UK Na-

tional Cancer Registration and Analysis Service (NCRAS).

The primary dataset used in this work is a collection of H&E stained Tissue Micro-arrays (TMAs) of tumor tissue biopsies collected

from St. Georges Hospital, London. It consists of 4 Tissue Micro-array (TMA) slides scanned using a Hamamatsu Nanozoomer S360

scanner at 203 (0.4415 microns per pixel) with a total of 279 cores covering 102 separate cases (patients). After the removal of drop-

ped and severely damaged/incomplete cores, we are left with 234 cores over 90 patients, of which 148 are EM, 61 BM, and 25 SM.

We additionally use a validation set of TMA cores over two slides provided by Mesobank, scanned at 203 (0.5015 microns per pixel)

using a Leica Aperio AT2. The class counts after removal of dropped/damaged cores were 258 cores over 77 patients, with 155 EM,

68 BM, and 35 SM. Only core-level labels are available. We first perform Vahadane stain normalization31 to minimize systematic stain

variability between slides and cores. To represent a TMA core as a graph suitable for learning a GNN, we detect cells and extract

features from these as described in Building graph neural networks on tissue cores.
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METHOD DETAILS

Problem formulation
As the biphasic subtype is a mix of epithelioid and sarcomatoid components, and subtype labels are only available at the core level,

wemodel the subtype prediction task as a binary Multiple Instance Learning (MIL) problem. Under theMIL paradigm,32 an example is

represented by a bag of instances, and a bag is considered positive if it contains at least one positive sample. We express the sub-

typing problem as a dual MIL prediction task. In the first task, SM is considered the positive instance, whereas in the second task EM

is considered the positive instance. Formulating the problem as two parallel MIL tasks allows the possibility for some instances to be

negative instances in both tasks, in contrast to viewing any instance that is not sarcomatoid as being epithelioid which would be

implicitly assumed in any single-task MIL formulation.

The goal of a MIL predictor is to use training data consisting of bags with bag level labels only to predict both bag and instance

level labels in testing. Formally, let B = fX1;.;XnB g be a bag corresponding to a single TMA core in our dataset, where Xi are in-

stances (cells) within the bag. The number of instances nB can vary across bags. Each core, represented by bag B, is associated

with a label YB ˛ f0; 1;2g in the training dataset. In our formulation, considering SM as the positive instance, epithelioid-labelled

cores take the label (YB = 0), and biphasic and sarcomatoid cores take the label (YB = 1;YB = 2) respectively, as we expect pro-

gressively more sarcomatoid instances in BM and SM examples. Conversely, in the dual task (where EM is considered the positive

class), biphasic and epithelioid cores take the bag labels (YB = 1;YB = 2), with sarcomatoid becoming the negative example

(YB = 0). This labeling system, by predominance of positive instances, is a departure from that typically used in the MIL setting,

where only positive (YB = 1) and negative (YB = 0) bags exist. We deal with this with our use of a ranking-based loss, as detailed in

GNN model architecture. Our goal is then to build a machine learning model FðB;FÞ with trainable parameters F that can use a

labeled training dataset D = fðB1;Y1Þ; ðB2;Y2Þ;.; ðBM;YMÞg to generate a predicted label for a test core B. This is done by aggre-

gating instance level predictions zi = gðXi;FÞ to give ZB = FðB;FÞ = Aggðfzi = gðXi;FÞjXi ˛BgÞ through an appropriate aggrega-

tion function Aggð $Þ such as max or average across top most positive instances.

Modeling the mesothelioma subtyping problem through MIL allows us to use core-level labels to learn an instance-level scoring,

with whichwe can identify predominantly EM or SM regions in a core. This enables us to quantify where each tissue sample falls in the

EM-to-SM continuum according to the relative proportions of SM and EM instances. This fine-grained and natural characterization of

a tumor can lead to more informed decisions regarding treatment.

Building graph neural networks on tissue cores
A tissue sample can be described by its individual component cells and their spatial arrangement within the sample. Their physical

proximity will result in nearby cells affecting each other, through their sharedmicro-environment and interaction via various biological

processes. Therefore, a natural way to represent the sample is as a graph, with each cell being a node in the graph, connected to

other nearby cells in its neighborhood. Let G = ðV ;EÞ denote a graph, where V and E are the sets of nodes and edges respectively.

Each node v˛V is associated with a feature vector Xv. In our case, each node v is a cell, with features Xv describing characteristics of

the cell and its immediate surroundings.

We use Stardist33 within QuPath34 to perform cell detection on the TMA cores. Stardist is an approach to cell detection which uses

star-convex polyhedra to represent objects. For each pixel, the distances to the boundary of its containing object along a set number

of radial directions are learned.

For each detected cell, we use QuPath to extract features describing both the cell, and the region surrounding it, including some

haralick texture features as described in Haralick et al.35 for a total of 157 features as described below.

d Shape features: Area, length, circularity, Max and Min diameter for both nucleus and whole cell

d Intensity features: Mean, Median and Standard Deviation for hematoxylin and eosin channels over cell nucleus, cell cytoplasm

and whole cell

d Shape/intensity smoothed: Above features smoothed over nearby cells using a Gaussian kernel of diameter 50 mm

d Delaunay cluster features: number of neighbors, edge length statistics, cluster means of above features.

d Haralick texture features on a small circular region around detection: calculated on the eosin channel, the hematoxylin channel

and on the OD sum.

In addition to these features, we extract 72372 image patches centered at the centroid of each cell and use a resnet34 (imagenet

pretrained weights) to extract a further 512 features for each cell, taken from the penultimate layer output of the resnet model. We

then construct the graph by connecting cells to each other cell whose centroid lies within a small radius, which we set at 30 mm.

The process of building the cell graph is illustrated in Figure 1B.

GNN model architecture
Graph neural networks (GNNs) are a powerful tool for representation learning on graphs. GNNs typically follow a neighborhood ag-

gregation strategy,36 where we update the representation of a node iteratively by a learned aggregation of the representations of its

neighbors. To learn the dual MIL task as described in Problem formulation, our architecture branches after the neighborhood
Cell Reports Medicine 4, 101226, October 17, 2023 e2
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aggregation layers. We denote the branches as Sarcomatoid (S) and Epithelioid (E) branch after the instances considered as positive

in each task. An illustration of our GNN architecture can be found in Figure 1C.

Different GNN implementations vary in how they perform this aggregation, and how they combine the aggregation with the nodes

current representation. We use the EdgeConv approach to aggregation from Wang et al.,37 which at layer k > 1 takes the form:

hðkÞ
v =

1

jNvj
X
u˛Nv

fQk

�
hk� 1
v khðk� 1Þ

v � hðk� 1Þ
u

�

here,Nv is the neighborhood of node v (i.e., the set of all nodes towhich v is connected), k denotes concatenation, and fQk
is chosen to

be a multi-layer perceptron (MLP) with parameters Qk . The feature representation at each layer is h
ðkÞ
v ˛Rdk and the initial represen-

tation of the node is the feature vector, h
ð0Þ
v = Xv ˛Rd0 . The output of the first layer is a purely local transformation h

ð1Þ
v = fQ1

ðXvÞ,
where again fQ1

is an MLP with parameters Q1. At each layer we choose fQk
to be an MLP with one hidden layer, MLPðdk� 1;dkÞ

with input dimension dk� 1 and hidden layer and output dimension dk . Rather than computing the final output zv at a node from

the representation in the final layer only, we follow the concatenation approach in Jumping Knowledge Networks38 to combine

the representation at different layers.

This combined representation from the graph convolution layers is passed to the E and S branches, to give for the S branch:

zðsÞv = s
�
aðsÞfQs

�h
hð1Þ
v k.khðKÞ

v

i�
+ bðsÞ

�

Here sð $Þ denotes a sigmoid function, and both aðsÞ = f
ðsÞ
a ðXÞ and bðsÞ = f

ðsÞ
b ðXÞ are the output of further small MLPs taking as input a

core-level feature mean X = 1
N

P
v˛V

Xv. In a similar way, we also obtain z
ðeÞ
v for the E branch. We take the graph level prediction to be

Z = 1
jV j

P
v˛V

ðzðsÞv � z
ðeÞ
v Þ, the mean of the cell-level scores.

To train our model, we use a pairwise ranking loss:

L =
X

i˛Batch

X
j˛Batch

maxð0;1 � ðYi � YjÞðZi � ZjÞÞ

where one prediction head (treating S as the positive instance) is trained to rank bags S>B>E and the second is trained to rank E >

B>S, i.e., treating E as the positive instance. Our model is implemented using the PyTorch geometric framework. We used 5

EdgeConv layers, each learning a feature representation of dimension 10. We use the Adam optimiser39 and a decaying cyclic

learning rate scheme40 with min and max learning rate 2310�5 and 13 10�4. The cycle length is 50 epochs and at each cycle,

the max lr decays by a factor of 0.8. We train for a maximum of 500 epochs with early stopping.

Cell morphology characterization
To investigate the typical cell morphologies and morphological differences of cells assigned high and low scores by the model, our

approach is similar in concept to the ‘eigenfaces’ decomposition in Turk and Pentland.41 We have taken the highest scoring 10% of

cells from sarcomatoid cores, and the lowest scoring 10% of cells from epithelioid cores, and aligned the images of all the cells so

that the major axis is oriented vertically. We have thenmasked out all but a small region around the cell so that as little background as

possible remains. Finally, we have taken theH channel of the aligned cell images, and performed Principal Component Analysis (PCA)

on the pixel values. This process and some of the resulting components are illustrated in Figure S2.

We use this analysis to illustrate the differences inmorphology between cells scored highly sarcomatoid or non-sarcomatoid by our

model, as presented in Characterization of cellular morphologies.

Model performance and evaluation
For performance evaluation on the primary cohort, we employ a hold-one-out cross-validation strategy over slides, so that for each

fold all cores of a single slide are held out as the test set. This is done to avoid any potential bias from systematic differences between

slides, and to ensure no mixing of cores from the same patient occurs between the training and testing sets. The cores to be used for

training are split 75%–25% into train and validation sets, respectively. We compared ourmodel with CLAM,14 and PINS,13 two patch-

based methods which attempt to focus training in an adaptive way on the most important instances. We additionally compared with

two simple MIL approaches, max-MIL and naive-MIL. Max-MIL is a patch-based method where we backpropagate only on the

maximal instance during training. This has been used in for example.18 Naive-MIL is a naive approach whereby we simply assign

the bag level label to all instances in a bag, and treat all instances equally during training. For both of these methods we used a re-

snet34 pre-trained on imagenet as the base patch level model. To evaluate performance on the external validation cohort, we have

trained our model on the entire St. Georges cohort, and evaluated model predictions on the Mesobank cohort. Conversely, we also

present results obtained training on Mesobank data and evaluate that model on the St. Georges data. Model performance is sum-

marized in Table 1, and Figure S4 as described in Predictive performance.
e3 Cell Reports Medicine 4, 101226, October 17, 2023
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QUANTIFICATION AND STATISTICAL ANALYSIS

Survival analysis was done using lifelines in python. The log-rank test was used for p values and the Kaplan-Meier estimator was used

for plotting the survival curves. Relevant details can be found in Survival analysis using MesoScores and in Figure 6.

Performance metric calculations found in Predictive performance, Figure S4, and Table 1 were done in python using scikit-learn.

Center and dispersion definitions used were mean and standard deviation.

Relevant values of n were 234 for St. Georges dataset, 258 for mesobank dataset, where n is number of TMA core images.

No specific methods were used to determine if data met the assumptions of the statistical approach.
Cell Reports Medicine 4, 101226, October 17, 2023 e4
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